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MOTION OF A HIGHLY VISCOUS NON-NEWTONIAN LIQUID IN RESERVOIRS 
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V. M. Postnikov, and O. I. Mikulin 

UDC 532.135 

Self-similar solutions are found for the equation of spreading of a thin layer 
of high viscosity non-Newtonian liquid in the presence of a constant power 
source. Results are compared with experimental data. 

It was shown in [i] that in the approximation of a geometrically thin layer (h0/L << i, 
where h 0 is the layer heizht) flow over a horizontal plane of a layer of high viscosity rheo- 
logically complex liquid Re h = (pgh/q)(h/L) 2 << 1 can be described by using an equation for 
the change in layer height [h = h(x, y, t)] with time: 

dhs_7_ = : V (  pgh~ ) ' V  h , 13=i ' (1 ~)~uF[ pgh IVhl(1--E)jd ~ . -  (1)  
~] 0 , 0 T0 

For a Newtonian liquid ~ = i, 13 = 1/3, for a power model (T = ku n) 

1 1 

( 1 gr= ~ ~= n 9gh 'w~zl 
T0 / 2,,7 ~ 1 ~0 

where ~0 is the value of the shear stress at which the viscosity is equal to q0. 

In a radial coordinate system Eq. (i) can be written in the form 

O~ 1 8 ~ ~ Oh i !,. (2) 
81 r Or L. % dr J 

For a power model, in particular, Newtonian, at n = 1 Eq. (2) has a self-similar solu- 
tion describing spreading of a liquid with a constant supply at flow rate Q (Fig. i). This 
solution can be found as in the analogous filtration problem [2]. The dependence of the 
height h on radius r and time t can be expressed in terms of self-similar dimensionless vari- 
ables length $ and time ~ in the following manner: 

wher'e ~ ( ~ ) ,  ~ ( ~ ) ,  f ( $ )  a r e  some f u n c t i o n s .  E q u a t i o n  (2)  must  be s o l v e d  s i m u l t a n e o u s l y  w i t h  
t h e  c o n d i t i o n  of  l i n e a r  i n c r e a s e  o v e r  t i m e  of  t h e  l i q u i d  vo lume:  

@ =  i2ahrdr. 

Substitution of Eq. (3) in Eq. (4) yields 

(4) 

r (0 
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- - ,  .i f (~)~d~ _ = 1. ( 5 )  
0 
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Fig. i. Diagram of liquid 
spreading. 

We transform Eq. (2) into an expression for the function f($) by substituting Eq. (3) there- 
in. To do this we use the expressions 

0---7--= t o q)(~) (I)(~) d~ L rP(~) ~ ~" d~ ' 

Oh 1 d/ (7) 
Or r  ~(0 d~ 

For the power model 
1 

I " II P -- 2n + 1 % (9 (~) d) (~) qo (0 d~ (8) 

Even for n = i Eqs. 
lar solution that: 

Substituting Eqs. (6)-(8) in Eq. (2) and equating the coefficients of ~, we obtain 

1 d~J(~) = C 1 d~(~), 

where C is an arbitrary constant. This condition is satisfied at # = ~C. With considera- 
tion of the first expression of Eq. (5) we find: Qt0~ = 2~h03~ 2-C. Hence 

Qto i 2 m -  1 
~s ,  , C - - -  (9) A = 2ah~ ~ , ? = (A~) m', (D = '~"~"-~ m 

The parameters in these expressions are defined after substitution of Eq. (9) into Eq. (2): 

! 1 

5 3n ' ' As  = 1, 

Choosing A = 1, we f ind  an exp res s ion  for  the  l a y e r  h e i g h t  s c a l e  

1 n 

The equa t ion  for  the  f u n c t i o n  f (~)  can be w r i t t e n  in the  form 
l - - n  

--[(2m+l)f(~)-}-m~_ d~ df ] = I~ d~d [~fa(f]~, ~-df I) '~ --~- " df ] (12) 

I t  must be so lved  s imu l t aneous ly  wi th  the  i n t e g r a l  exp res s ion  of Eq. (5) 

i f  (D ~d~ = 1. 
0 

(12) ,  (13) cannot  be solved a n a l y t i c a l l y .  

(13) 

It follows from the self-simi- 

I 

h -  ~ , _ ,  , ~ = ho~" ' r = T '  'to = , 

For a Newtonian liquid, we find from Eqs. (i0), (ii): m = i/2, h 0 = (Qn/2~pg) I/~. 
s i m i l a r  express ions  show t h a t  the  l a y e r  spreads  by a power law ( cons t an t  ~ l e v e l ) :  

�9 2 4 - n  I 
2 ( n  hi) 

R(t)~'~(" Q "3"!-5i ('~)3n~5 3 n - k S ~ T )  [ 
~, k 

The self- 

(it) 
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Fig. 2. Coefficient I vs. n. 

Fig. 3. Comparison of self-similar solution (curves) with 
experimental data (points) for flow rates Q = 27.9.10 -5 (i) 
and 9.10 -5 m3/sec (2). 

The dimensionless quantity X depends on the rheological parameter n. 

The approximate form of the layer and the value of X can be found by using the quasi- 
steady state solution of Eq. (2): 

d 'r / : 0 .  dr ( 9gh3 ~ dh 
, ~1o - $ P ,  ( 1 5 )  

We add to  Eq. (15)  t h e  bounda ry  c o n d i t i o n  

hl~==mt ) = O, (16) 

where R(t) is the radius of the liquid layer. Equations (15), (16) can be integrated easi- 
ly: 

R(t) (17) 

Here 

1 

( i 

I ]2(n+i) h(71---- [ 2 ( n +  1) ( 1 - - r  l-n) , n ~ l ;  
[ ! - - n  / , 

[ [41  i]: _ , n : l .  /" 

Only for n < 1 is a finite h value realized at the center. 
l i q u i d  volume in the  l a y e r  [3 ] :  

Applying Eq. (17), we find the 

where 

! 

V = 2~R z (t) hoI (n), I (n) = .f 7-hdT, 
0 

(18) 

I (n) = 
2(_r~j) r '  2 ' (1+ , - , ,  t 

2 ( n +  i) I 

_ 3 _ _ _ ]  
F 1 + i _ n  , 2 (n+  1)! 

Substituting in Eq. (18) the expression for h0 we find that the relationship V = Qt is satis- 
fied, when R(t) is defined by Eq. (14) at 
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2(~§ n 

[ I (,0 j i (19) 

F i g u r e  2 shows va lues  o f  ~ f o r  v a r i o u s  n, c a l c u l a t e d  by Eq. (19 ) .  

The slow ax isymmet r i c  f l o w  of  a Newtonian l i q u i d  over  a h o r i z o n t a l  p lane  w i t h  cons tan t  
flow rate supply was studied in [4]. It was shown that for large times the dependence of 
layer radius on time is given by a law R(t) = a Q3/8(pg/k)i/8(pg/k)I/stl/2. Numerically the 
value ~ = 0.62 was determined [4]. The expression of [4] can be obtained from Eq. (14) at 
n = i for %(1) = (2~)~/~ �9 The experiments in [4] were performed for water-glycerine mix- 
tures with kinematic viscosity of (0.05-9.15) cm2/sec. The asymptotic expression is appli- 
cable 10-30 sec after commencement of spreading. For the experimental value a = 0.65 [4] 
%(I) = 1.29. Calculation with Eq. (19) gives %(I) = 1.19. 

A comparison with experimental data for spreading of a layer of a solution containing 
8% polyisobutylene by mass is shown in Fig. 3 for two constant flow rates. The dependence 
of stress T on shear velocity y over the entire ~ range is described by the equation T = 
351.3~ ~ It is evident that good agreement has been achieved between calculated and ex- 
perimental values. 

NOTATION 

h, L, layer thickness and height, m; Re, Reynolds number; u, spreading velocity, m/sec; 
p, ~, liquid density and viscosity, kg/m 3 and Pa.sec; ~, stress, Pa; ~, shear velocity, i/ 
sec; t, time, sec; x, y, r, 8, coordinates; n, exponent in power law; k, consistency coeffi- 
cient, Pa.sec-n; Q, flow rate, m3/sec; to, time scale; ~, correction coefficient; D, layer 
diameter, m. 
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