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MOTION OF A HIGHLY VISCOUS NON-NEWTONIAN LIQUID IN RESERVOIRS

V. V. Mel'nichenko, B. M. Khusid, A. A. Dunets, UDC 532.135
V. M. Postnikov, and 0. I. Mikulin

Self-similar solutions are found for the equation of spreading of a thin layer
of high viscosity non-Newtonian liquid in the presence of a constant power
source. Results are compared with experimental data.

It was shown in [1] that in the approximation of a geometrically thin layer (h,/L « 1,
where h, is the layer height) flow over a horizontal plane of a layer of high viscosity rheo-
logically complex liquid Rep = (pgh/n)(h/L)? « 1 can be described by using an equation for
the change in layer height [h = h(x, vy, t)] with time:
on pgh? P gh o] e
Sty [P pyn), =0 —pew [ a1 e (1)
ot Mo , B Lo

For a Newtonian liquid ¥ = 1, B = 1/3, for a power model (1 = kyD)

L 1 —L—l
n

() e
Ty f 2n+1 4\ 1

where 1, is the value of the shear stress at which the viscosity is equal to ny.
In a radial coordinate system Eq. (1) can be written in the form

oh 1 0
at r 0

¥ ]
Lom o or

<

For a power model, in particular, Newtonian, at n = 1 Eq. (2) has a self-similar solu-
tion describing spreading of a liquid with a constant supply at flow rate Q (Fig. 1). This
solution can be found as in the analogous filtration problem [2]. The dependence of the
height h on radius r and time t can be expressed in terms of self-similar dimensionless vari-
ables length £ and time { in the following manner:

o Pl® o 1 £l (3)
og T e Tk

where o(Z), ¢(¢), £f(g) are some functions. Equation (2) must be solved simultaneously with
the condition of linear increase over time of the liquid volume:

Qt = ( 2mhrdr. (4)

5
Substitution of Eq. (3) in Eq. (4) yields

__o.p3 LPZ(C) v o
Q= 2 E [ FOHE= 1. (5)
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Fig. 1. Diagram of liquid
spreading.

We transform Eq. (2) into an expression for the function £(&) by substituting Eq. (3) there-
in. To do this we use the expressions

oh ::__wl_ h, [ f (&) d¢>_L 1 do . df } (6)
ot fy ©®Q L DO d @ @ dr  dE |
oh 1 df S

o OQeE d

For the power model
1

-1

r . (8)

" [pgha f(%); i
mtl | % 0O | 0QeD &

Substituting Eqs. (6)-(8) in Eq. (2) and equating the coefficients of [, we obtain
1 do() _c 1 de(D)

@ 4 () 4

where C is an arbitrary constant. This condition is satisfied at & = ¢C. With considera-
tion of the first expression of Eq. (5) we find: Qt,C = 27hy3¢2-C. Hence
2m—1

Qto A N ; 11—
= o= (A", @ = (ALY, C = , 9

The parameters in these expressions are defined after substitution of Eq. (9) into Eq. (2):

1 1

e D o[ ) E () e, (o
54 3n oghy 2nhy \ pghy

Choosing A = 1, we find an expression for the layer height scale

1 n

[ T

The equation for the function f(£) can be written in the form
1n
af 1 4 [ df‘ "gf (12)
—1(@ 1 Eomia | = — | Ef3 | | = —_—.
[(m+ 1@+ me d&J : & [ (f’ 7l d’é]

It must be solved simultaneously with the integral expression of Eq. (5)

F(B)EdE = 1. | (13)

Oty

Even for n = 1 Egs. (12), (13) cannot be solved analytically. It follows from the self-simi-

lar solution that:
1

I f (& . r t - k n
h= .02{1}—1;)1 ;&= 2 ? ;:W’ t():"( ) .
A At fo . pghy

For a Newtonian liquid, we find from Egs. (10), (11): m = 1/2, hy = (Qn/Zﬂpg)I/“. The self-
similar expressions show that the layer spreads by a power law (constant & level):

- 24n 1 a1 ;
0 T \ s e (14)

R(t):k(_g_n_) (_gkg) ooy
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Fig. 2 \ Fig. 3
Fig. 2. Coefficient A vs. n.

Fig. 3. Comparison of self-similar solution (curves) with
experimental data (points) for flow rates Q = 27.9:107° (1)
and 9-:107°% m3/sec (2).

The dimensionless quantity A depends on the rheological parameter n.

The approximate form of the layer and the value of A can be found by using the quasi-
steady state solution of Eq. (2):

d (’r pgh? B dh j _0 (15)

dr Mo dr |
We add to Eq. (15) the boundary condition

Rlyriy = 0» (16)

where R(t) is the radius of the liquid layer. Equations (15), (16) can be integrated easi-
ly:

R’ (17)

Here

3

50:[(’ Q jn R¥"(f) b (2}1+1 )nJm
\ 2 rg n

, n= 1

Only for n < 1 is a finite h value realized at the center. Applying Eq. (17), we find the
liquid volume in the layer [3]:

1

V= 22RO kol (n), () = | 7hdr, (18)
b

‘I‘<—5-~>/23/4, n=1
4

[(n) = Q(n—{-l)l-«f 2 \)Fll—]—‘—i—_\-
l1—n (l~n ( 9W+”'}n¢L
2 Ty

l—n  2(n--1))

where

F(H-

Substituting in Eq. (18) the expression for h, we find that the relationship V = Qt is satis-
fied, when R(t) is defined by Eq. (14) at
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(19)

\ont1

Figure 2 shows values of A for various n, calculated by Eq. (19).

The slow axisymmetric flow of a Newtonian liquid over a horizontal plane with constant
flow rate supply was studied in [4]. It was shown that for large times the dependence of
layer radius on time is given by a law R(t) =a Qs(s(pg/k)1/8(pg/k)l/8t1/2. Numerically the
value a = 0.62 was determined [4]. The expression of [4] can be obtained from Eq. (14) at
n =1 for A(I) = (21)3/% . The experiments in [4] were performed for water-glycerine mix-
tures with kinematic viscosity of (0.05-9.15) cm?/sec. The asymptotic expression is appli-
cable 10-30 sec after commencement of spreading. For the experimental value a = 0.65 [4]
A(I) = 1.29. Calculation with Eq. (19) gives A(I) = 1.19.

A comparison with experimental data for spreading of a layer of a solution containing
8% polyisobutylene by mass is shown in Fig. 3 for two constant flow rates. The dependence
of stress T on shear velocity y over the entire y range is described by the equation 1 =
351.3y%+%%8, It is evident that good agreement has been achieved between calculated and ex-
perimental values.

NOTATTION

h, L, layer thickness and height, m; Re, Reynolds number; u, spreading velocity, m/sec;
p, N, liquid density and viscosity, kg/m® and Pa-sec; t, stress, Pa; y, shear velocity, 1/
sec; t, time, sec; x, y, r, 0, coordinates; n, exponent in power law; k, consistency coeffi-
cient, Parsec™®; Q, flow rate, m®/sec; t,, time scale; A, correction coefficient; D, layer
diameter, m.
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